COP1 Jointly Modulates Cytoskeletal Processes and Electrophysiological Responses Required for Stomatal Closure

نویسندگان

  • Rajnish Khanna
  • Junlin Li
  • Tong-Seung Tseng
  • Julian I. Schroeder
  • David W. Ehrhardt
  • Winslow R. Briggs
چکیده

Reorganization of the cortical microtubule cytoskeleton is critical for guard cell function. Here, we investigate how environmental and hormonal signals cause these rearrangements and find that COP1, a RING-finger-type ubiquitin E3 ligase, is required for degradation of tubulin, likely by the 26S proteasome. This degradation is required for stomatal closing. In addition to regulating the cytoskeleton, we show that cop1 mutation impaired the activity of S-type anion channels, which are critical for stomatal closure. Thus, COP1 is revealed as a potential coordinator of cytoskeletal and electrophysiological activities required for guard cell function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

From The Cover: A role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening.

Cryptochromes (CRY) are blue light photoreceptors that mediate various light-induced responses in plants and animals. Arabidopsis CRY (CRY1 and CRY2) functions through negatively regulating constitutive photomorphogenic (COP) 1, a repressor of photomorphogenesis. Water evaporation and photosynthesis are regulated by the stomatal pores in plants, which are closed in darkness but open in response...

متن کامل

A role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening

Cryptochromes (CRY) are blue light photoreceptors that mediate various light-induced responses in plants and animals. Arabidopsis CRY (CRY1 and CRY2) functions through negatively regulating constitutive photomorphogenic (COP) 1, a repressor of photomorphogenesis. Water evaporation and photosynthesis are regulated by the stomatal pores in plants, which are closed in darkness but open in response...

متن کامل

Cytokinin-Mediated Regulation of Reactive Oxygen Species Homeostasis Modulates Stomatal Immunity in Arabidopsis.

Stomata play an important role in preinvasive defense responses by limiting pathogen entry into leaves. Although the stress hormones salicylic acid (SA) and abscisic acid (ABA) are known to regulate stomatal immunity, the role of growth promoting hormones is far from understood. Here, we show that in Arabidopsis thaliana, cytokinins (CKs) function in stomatal defense responses. The cytokinin re...

متن کامل

Nitric oxide, stomatal closure, and abiotic stress.

Various data indicate that nitric oxide (NO) is an endogenous signal in plants that mediates responses to several stimuli. Experimental evidence in support of such signalling roles for NO has been obtained via the application of NO, usually in the form of NO donors, via the measurement of endogenous NO, and through the manipulation of endogenous NO content by chemical and genetic means. Stomata...

متن کامل

Integration of signaling pathways in stomatal development.

Stomata regulate carbon dioxide and water vapor exchange between the plant leaf and the atmosphere. Thus, they represent a critical control point not only for overall photosynthetic efficiency and water balance in the plant, but also for global carbon and water cycling. Stomatal development and function depend upon a variety of exogenous and endogenous signals, including light, carbon dioxide, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2014